8606 0

Белок

В процессе клубочковой фильтрации образуется практически безбелковая жидкость, однако через фильтрующую мембрану в нефрон проникает все же небольшое количество различных белков. Они всасываются клетками проксимальных канальцев; экскреция белка в норме не превышает 20—75 мг/сут, хотя при некоторых патологических состояниях протеинурия может достигать 50 г/сут. Реабсорбция белка происходит с помощью процесса, называемого пиноцитозом.

Увеличение экскреции белка почкой может быть обусловлено возрастанием фильтрации белка в клубочках, превышающей способность канальцев к его реабсорбции, и нарушением обратного всасывания белков. Существуют раздельные системы реабсорбции различных белков, так как обнаружен Тm для гемоглобина, альбумина. Протеинурия в клинике может выявляться не только при патологических, но и при ряде физиологических состояний - большой физической нагрузке (маршевая альбуминурия), переходе в вертикальное положение (ортостатическая альбуминурия), повышении венозного давления и др.

Натрий и хлор

Ионы натрия и хлора преобладают во внеклеточной жидкости; они определяют осмотическую концентрацию плазмы крови, от их выведения или удержания почкой зависит регуляции объема внеклеточной жидкости. Так как состав ультрафильтрата весьма близок к внеклеточной жидкости, в первичной моче в наибольшем количестве содержатся ионы натрия и хлора, реабсорбция которых в молярном выражении превышает обратное всасывание всех остальных профильтровавшихся веществ, вместе взятых.

Реабсорбция натрия и хлора в дистальном сегменте нефрона и собирательных трубках обеспечивает участие в осмотическом гомеостазе. Не менее важно и то, что система транспорта натрия связана с трансмембранным переносом большой группы органических и неорганических веществ. В последние годы существенно изменились представления о механизмах, транспорта ионов клетками нефрона [Лебедев А. А., 1972; Наточин Ю. В., 1972; Vogel Н., Ullrich К., 1978]. Если раньше считали активным только транспорт натрия, то в настоящее время убедительно продемонстрирована способность клеток одного из отделов нефрона к активному транспорту ионов хлора; . Сильно изменились представления о механизме реабсорбции жидкости в проксимальном канальце. Ниже обобщены современные данные о реабсорбции натрия и хлора в почечных канальцах и регуляции этого процесса.

В проксимальном сегменте нефрона, включающем извитой и прямой канальцы, реабсорбируется около 2/3 профильтровавшегося натрия и воды, но концентрация натрия в канальцевой жидкости остается такой же, как в плазме крови. Особенность проксимальной реабсорбции заключается в том, что натрий и другие реабсорбируемые вещества всасываются с осмотически эквивалентным объемом воды и содержимое канальца всегда остается изоосмотичным плазме крови. Это обусловлено высокой проницаемостью для воды стенки проксимального канальца.

Клетки этого канальца активно реабсорбируют натрий. В начальных отделах канальца главным анионом, сопровождающим натрий, является бикарбонат; стенка этой части нефрона для хлоридов менее проницаема, что приводит к постепенному увеличению концентрации хлоридов, которая возрастает в 1,4 раза по сравнению с плазмой крови. В начальных частях проксимального канальца интенсивно реабсорбируются глюкоза, аминокислоты и некоторые другие органические компоненты ультрафильтрата. Таким образом, к конечным частям проксимального извитого канальца состав из осмотической жидкости существенно изменяется - из нее всасываются основная масса бикарбоната, многие органические вещества, но становится выше концентрация хлоридов (рис. 1).

Оказалось, что межклеточные контакты в этой части канальца высокопроницаемы для хлоридов. Так как их концентрация в просвете выше, чем в околоканальцевой жидкости и крови, они пассивно реабсорбируются из канальца, увлекая за собой натрий и воду. В прямом отделе проксимального канальца продолжается реабсорбция натрия и хлоридов. В этом отделе происходят как активный транспорт натрия, так и пассивная реабсорбция хлоридов и движение части натрия вместе с ними по межклеточным промежуткам, хорошо проницаемым для хлоридов.

Рис. 1. Локализация реабсорбции и секреции электролитов и неэлектролитов в нефроне. Стрелка, обращенная из просвета канальца, - реабсорбция вещества, в просвет канальца - секреция.

Проницаемость стенки канальцев для ионов и воды определяется свойствами не только мембран клеток, но и зоны плотного соединения, где клетки контактируют друг с другом. Оба этих элемента существенно отличаются в разных отделах нефрона. Через апикальную мембрану клетки натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала, так как внутренняя поверхность клетки электроотрицательна по отношению к канальцевой жидкости.

Далее натрий движется по цитоплазме к базальной и боковым частям клетки, где находятся натриевые насосы. В этих клетках интегральной частью натриевого насоса служит активируемая ионами Na+ и К+ зависимая от Mg2+ аденозинтрифосфатаза (Na+, К+-АТФ-аза) . Этот фермент, используя энергию АТФ, обеспечивает перенос из клетки ионов натрия и поступление в нее ионов калия. Ингибиторами этого фермента служат сердечные гликозиды (например, уабаин, строфантин К и др.) полностью прекращающие активную реабсорбцию натрия клетками проксимального канальца.

Важнейшее значение в функциональной способности проксимального канальца имеет высокопроницаемая для некоторых ионов и воды зона клеточных контактов. Через нее происходят пассивная реабсорбция хлоридов и движение воды по осмотическому градиенту. Полагают, что скорость всасывания жидкости по межклеточным промежуткам регулируется под влиянием таких физических сил, как соотношение между уровнем гидростатического давления в почечных артериях, венах и мочеточнике, величина онкотического давления в околоканальцевых капиллярах и др. Проницаемость межклеточных промежутков не строго постоянна - она может меняться при ряде физиологических состояний. Даже небольшое увеличение осмотического градиента, вызываемое мочевиной, обратимо увеличивает межклеточную проницаемость в почечных канальцах.

В тонком нисходящем отделе петли Генле не происходит сколько-нибудь существенной реабсорбции натрия и хлора. Особенностью этого канальца по сравнению с тонким и толстым восходящим отделом петли Генле является высокая проницаемость для воды. Тонкий нисходящий отдел петли характер разуется низкой проницаемостью для натрия, а восходящий наоборот - высокой. Пройдя по тонкому отделу петли Генле, жидкость поступает в толстый восходящий отдел петли. Стенка этого канальца всегда имеет низкую проницаемость для воды. Особенность клеток этого канальца состоит в том, что в них функционирует хлорный насос, активно реабсорбирующий хлор из просвета канальца, натрий следует пассивно по градиенту. Неясно, происходит ли в этом канальце только пассивная реабсорбция натрия или частично функционирует и натриевый насос.

С клинической точки зрения важно, что открытие хлорного насоса совпало с выяснением механизма действия ряда наиболее эффективных современных диуретиков . Оказалось, что только при введении в просвет толстого восходящего отдела петли фуросемид и этакриновая кислота полностью угнетают реабсорбцию хлора. Они связываются с мембранными элементами клеток изнутри канальца, препятствуют поступлению хлора в клетку, а потому неэффективны при добавлении к внеклеточной жидкости (рис. 2). Эти диуретики поступают в просвет нефрона при фильтрации и секреции в проксимальном канальце, с током мочи достигают восходящего отдела петли Генле, прекращают реабсорбцию хлора и тем самым препятствуют здесь всасыванию натрия.

Рис. 2. Схема регуляции транспорта натрия и хлоридов в почке и механизма действия диуретиков [Наточин Ю. В., 1977]. Сплошной стрелкой показан активный транспорт, пунктирной - пассивный.

Толстый восходящий отдел петли Генле переходит в прямую часть дистального канальца, достигающую области macula densa, за которой следует дистальный извитой каналец. Этот отдел нефрона также малопроницаем для воды. Ведущим механизмом реабсорбции солей в этом канальце является натриевый насос, обеспечивающий реабсорбцию натрия против высокого электрохимического градиента. Особенность реабсорбции натрия в этом отделе состоит в том, что хотя здесь может всосаться лишь 10% профильтровавшегося натрия и скорость реабсорбции меньше, чем в проксимальном канальце, но создается больший концентрационный градиент, концентрация натрия и хлора в просвете может снижаться до 30-40 ммоль /л. В отличие от натрия реабсорбция хлора происходит в основном пассивно.

Связующий отдел соединяет дистальный сегмент нефрона с начальными отделами собирательных трубок. Эти канальцы раньше считавшиеся пассивными проводниками мочи в мочевыводящую систему, являются важнейшими структурами почки, тонко и точно реагирующими на действие гормонов и приспосабливающими работу почки к потребностям организма. В этих канальцах основой реабсорбции служит натриевый насос, хлориды реабсорбируются пассивно. Стенка канальцев может быть не только водонепроницаемой, но и высокопроницаемой для воды в присутствии АДГ. Именно в этом отделе канальцев (а не в дистальном сегменте, как полагали раньше) действует АДГ.

Транспорт натрия в этих клетках регулируется альдостероном. Изменение характера ионного транспорта и тем самым свойств переносчиков и насосов отражается и на особенностях химической структуры диуретиков, которые эффективны в этом отделе нефрона. В этих канальцах действуют верошпирон, амилорид, триамтерен. Верошпирон снижает реабсорбцию натрия, конкурентно уменьшая действие альдостерона. Совсем иной механизм действия у амилорида и триамтерена. Эти препараты действуют только после того, как попадут в просвет нефрона. Они связываются с теми химическими компонентами апикальной мембраны, которые обеспечивают вход натрия в клетку; натрий не может реабсорбироваться и экскретируется с мочой.

Кортикальные отделы собирательных трубок переходят в отделы, проходящие по мозговому веществу почки. Их функция отличается тем, что они способны активно реабсорбировать совсем небольшие количества натрия, но могут создавать очень высокий концентрационный градиент. Стенка этих канальцев малопроницаема для солей, а ее проницаемость для воды регулируется АДГ.

Клиническая нефрология

под ред. Е.М. Тареева

В организм человека и выведение продуктов обмена осуществляет выделительная система человека. Работа органов выделительной системы человека имеет свои сформированные в процессе эволюции механизмы выведения продуктов обмена, которыми являются фильтрация, реабсорбция и секреция.

Выделительная система человека

Выведение продуктов обмена из организма осуществляют которые состоят из почек, мочеточников, мочевого пузыря и мочеиспускательного канала.

Почки расположены в забрюшинном пространстве в области поясничного отдела и имеют бобовидную форму.

Это парный орган, состоящий из коркового и мозгового вещества, лоханки, и покрыта она фиброзной оболочкой. Лоханка почки состоит из малой и большой чаши, и из нее выходит мочеточник, который доставляет мочу в мочевой пузырь и через мочеиспускательный канал конечная моча выводится из организма.

Почки участвуют в обменных процессах, и их роль в обеспечении водного баланса организма, поддержании кислотно-щелочного баланса являются основополагающей для полноценного существования человека.

Строение почки очень сложное и ее структурным элементом является нефрон.

Он имеет сложное строение и состоит из проксимального канала, тельца нефрона, петли Генле, дистального канала и собирательной трубочки, дающей начало мочеточникам. Реабсорбция в почках проходит через канальцы проксимальной, дистальной части и петли Генле.

Механизм реабсорбции

Молекулярные механизмы прохождения веществ в процессе реабсорбции это:

  • диффузия;
  • эндоцитоз;
  • пиноцитоз;
  • пассивный транспорт;
  • активный транспорт.

Особое значение имеет для реабсорбции активный и пассивный транспорт и направление реабсорбируемых веществ по электрохимическому градиенту и наличию переносчика для веществ, работа клеточных насосов и другие характеристики.

Веществ идет против электрохимического градиента с затратой энергии на ее реализацию и через специальные транспортные системы. Характер передвижения - трансцеллюлярный, который осуществляется переходом через апикальную мембрану и базолатеральную. Такими системами являются:

  1. Первично-активный транспорт, который осуществляется с помощью энергии от расщепления АТФ. Его используют ионы Na+, Ca+, K+, H+.
  2. Вторично-активный транспорт, проходит за счет разницы в концентрации ионов натрия в цитоплазме и в просвете канальцев, и эта разница объясняется выходом ионов натрия в межклеточную жидкость с затратой энергии расщепления АТФ. Его используют аминокислоты, глюкоза.

Проходит по градиентам: электрохимическому, осмотическому, концентрационному, и для его осуществления не требуется затрат энергии и образования переносчика. Вещества, которые используют его - это ионы Cl-. Движение веществ осуществляется парацеллюлярно. Это движение через мембрану клетки, которая расположена между двумя клетками. Характерными молекулярными механизмами являются диффузия, перенос с растворителем.

Процесс реабсорбции белка проходит внутри клеточной жидкости, и, после расщепления его на аминокислоты, они поступают в межклеточную жидкость, что происходит в результате пиноцитоза.

Виды реабсорбции

Реабсорбция - это процесс, проходящий в канальцах. И вещества, проходящие через канальцы, имеют разные переносчики и механизмы.

В сутки в почках формируется от 150 до 170 литров первичной мочи, которая проходит процесс реабсорбции и возвращается в организм. Вещества, имеющие высокодисперсные компоненты, не могут пройти через мембрану канальцев и в процессе реабсорбции поступают в кровь с другими веществами.

Проксимальная реабсорбция

В проксимальном отделе нефрона, который расположен в корковом веществе почки, реабсорбция проходит для глюкозы, натрия, воды, аминокислот, витаминов и белка.

Проксимальный каналец образован эпителиальными клетками, которые имеют апикальную мембрану и щеточную каемку, и обращена она в сторону просвета почечных канальцев. Базальная мембрана образует складки, формирующие базальный лабиринт, и через них первичная моча попадает в перитубулярные капилляры. Клетки между собой соединены плотно и образуют пространство, которое проходит на всем протяжении межклеточного пространства канальца, и называется он базолатеральным лабиринтом.

Реабсорбция натрия имеет сложный трехступенчатый этап, и он является переносчиком для других веществ.

Реабсорбция ионов, глюкозы и аминокислот в проксимальном канальце

Основные этапы реабсорбции натрия:

  1. Прохождение через апикальную мембрану. Это - этап пассивного транспорта натрия, через Na-каналы и Na-переносчиков. Ионы натрия проходят в клетку через мембранные гидрофильные белки, образующие Na-каналы.
  2. Поступление или прохождение через мембрану сопряжено с обменом Na+ на водород, например, или же с поступлением его как переносчика глюкозы, аминокислоты.
  3. Прохождение через базальную мембрану. Это - этап активного транспорта Na+, через Na+/K+ насосы с помощью фермента АТФ, который при расщеплении выделяет энергию. Натрий, реабсорбируясь в почечных канальцах, постоянно возвращается в обменные процессы и его концентрация в клетках проксимального канальца - низкая.

Реабсорбция глюкозы проходит по вторично-активному транспорту и ее поступление облегчено за счет переноса ее через Na-насос, и она полностью возвращается в обменные процессы в организме. Повышенная концентрация глюкозы не проходит полностью реабсорбцию в почках и выделяется с конечной мочой.

Реабсорбция аминокислот проходит аналогично глюкозе, но сложная организация аминокислот требует участия специальных переносчиков для каждой аминокислоты на менее 5-7 дополнительных.

Реабсорбция в петле Генле

Петля Генле проходит через и процесс реабсорбции в восходящей и нисходящей части ее для воды и ионов отличается.

Фильтрат, попадая в нисходящую часть петли, спускаясь по ней, отдает воду за счет разного градиента давления и насыщается ионами натрия и хлора. В этой части вода реабсорбируется, а для ионов она непроницаема. Восходящая часть непроницаема для воды и при прохождении через нее первичная моча разбавляется, тогда, как в нисходящей концентрируется.

Дистальная реабсорбция

Этот отдел нефрона расположен в корковом веществе почки. Его функция заключается в реабсорбции воды, которая собирается с первичной мочой и подвергает реабсорбции ионы натрия. Дистальная реабсорбция - это разведение первичной мочи и формирование из фильтрата мочи конечной.

Поступая в дистальный каналец, первичная моча в объеме 15% после реабсорбции в почечных канальцах, составляет 1% общего объема. Собираясь после этого в собирательной трубочке, она разбавляется, и формируется конечная моча.

Нейро-гуморальная регуляция реабсорбции

Реабсорбция в почках регулируется симпатической нервной системой и гормонами щитовидной железы, гипоталамо-гипофизарными и андрогенами.

Реабсорбция натрия, воды, глюкозы увеличивается при возбуждении симпатических и блуждающих нервов.

Дистальные канальца и собирательные трубочки осуществляют реабсорбцию воды в почках под влиянием антидиуретического гормона или вазопрессина, который при уменьшении воды в организме увеличивается в больших количествах, а также увеличивается проницаемость стенок канальцев.

Альдостерон увеличивает реабсорбцию кальция, хлора и воды, так же, как и атриопептид, который вырабатывается в правом предсердии. Угнетение реабсорбции натрия в проксимальном отделе нефрона идет при поступлении паратирина.

Активация реабсорбции натрия идет за счет гормонов:

  1. Вазопрессин.
  2. Глюкоган.
  3. Кальцитонином.
  4. Альдостероном.

Угнетение реабсорбции натрия идет при выработке гормонов:

  1. Простагландин и простагландин Е.
  2. Атриопептид.

Кора головного мозга осуществляет регуляцию выведения или затормаживания мочи.

Канальцевая реабсорбция воды осуществляется множеством гормонов, отвечающих за проницаемость мембран дистального отдела нефрона, регуляцию транспорта ее по канальцам и многое другое.

Значение реабсорбции

Практическое применение научных знаний о том, что такое реабсорбция - это в медицине позволило получить информационное подтверждение о работе выделительной системы организма и заглянуть во внутренние его механизмы. проходит очень сложные механизмы и влияние на него окружающей среды, генетических отклонений. И они не остаются незамеченными при возникновении проблем на их фоне. Одним словом, здоровье - это очень важно. Следите за ним и за всеми процессами, происходящими в организме.

Еще в 1842 г немецкий физиолог К. Людвиг предполагал, что мочеобразование состоит из 3-х процессов. В 20-х годах ХХ столетия американский физиолог А. Ричардс подтвердил это предположение.

Образование конечной мочи является результатом трех последовательных процессов:

I. В почечных клубочках происходит начальный этап мочеобразования - клубочковая, или гломерулярная ультрофильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

II. Канальцевая реабсорбция - процесс обратного всасывания профильтровавшихся веществ и воды.

III. Секреция . Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

I .ГЛОМЕРУЛЯРНАЯ ФИЛЬТРАЦИЯ

Образование мочи начинается с клубочковой фильтрации, т.е. переноса жидкости от гломерулярных капилляров в боуменову капсулу, при этом жидкость проходит через клубочковый фильтр.

Фильтрующая мембрана . Фильтрационный барьер в почечном тельце состоит из трех слоев: эндотелий гломерулярных капилляров, базальная мембрана и однорядный слой эпителиальных клеток, выстилающих капсулу Боумена. Первый слой, эндотелиальные клетки капилляров, перфорирован множеством отверствий ("окон" или "фенестров")(d пор 40 – 100 нм). Базальная мембрана это гелеподобное, бесклеточное ячеистое образование, состоящее из гликопротеинов и протеогликанов. Клетки эпителия капсулы, которые покоятся на базальной мембране, носят название подоцитов. У подоцитов необычное осьминогоподобное строение, в результате чего они имеют множество пальцевидных отростков, вдавленных в базальную мембрану. Щелевидные пространства между расположенными рядом пальцевидными отростками представляют собой проходы, по которым фильтрат, пройдя эндотелиальные клетки и базальную мембрану, проникает в боуменово пространство(d щелей между педикулами подоцитов 24-30 нм)

В базальной мембране имеются поры(d пор 2,9 – 3,7 нм) , которые ограничивают прохождение форменных элементов крови, а также крупных молекул более 5-6 мм (молекул. вес больше 70000 Да: фильтруются молекулы, имеющие м.м. менее 70 000 Да: все минеральные вещества, органические соединения (за исключением крупномолекулярных белков, липоидов)

Поэтому крупные белки, такие как глобулины (мол.вес 160000) и казеины (мол. вес 100000) в фильтрат не поступают. Альбумины плазмы крови (мол.вес около 70000) проходят в фильтрат в ничтожном количестве. В просвет капсулы нефрона проникает инулин около 22% яичного альбумина, 3% гемоглобина и менее 0,01 % сывороточного альбумина (в случае гемолиза) таким образом, происходит фильтрация. Свободному прохождению белков через гломерулярный фильтр препятствует отрицательно заряженные молекулы в веществе базальной мембраны и выстилке, лежащей на поверхности подоцитов, поскольку подавляющее число белков плазмы несет почти только отрицательные электрические заряды. При определенной форме патологии почки, когда на мембранах исчезает отрицательный заряд, становятся "проницаемыми" по отношению к белкам.

Проницаемость гломерулярного фильтра определяется минимальным размером молекул, которые способны фильтроваться и зависит от:1) размера пор;2) заряда пор (базальная мембрана – анионит);3) гемодинамических условий; 4) работы педикул подоцитов(в них имеются актомиозиновые нити) и мезангиальных клеток.

По своему составу ультрафильтрат - первичная моча изотонична плазме крови. Неорганические соли и низкомолекулярные органические соединения (мочевина, мочевая кислота, глюкоза, аминокислоты, креатинин) - свободно проходят через клубочковый фильтр и поступают в полость капсулы Боумена. Основной силой, обеспечивающей возможность ультрафильтрации в почечных клубочках, является гидростатическое давление крови в сосудах. Его величина обусловлена тем, что приносящая артериола - больше по диаметру, чем выносящая, а также тем, что почечные артерии отходят от брюшного отдела аорты.

Площадь фильтрации в двух почках составляет 1,5 м 2 на 100 г ткани (т.е.почти равна поверхности тела.-S тела 1,73 м 2). Зависит от : 1) площади поверхности капилляров; 2) количества пор (больше, чем в любом другом органе; на их долю приходится до 30% поверхности эндотелиальных клеток);3) количества функционирующих нефронов.

Эффективное фильтрационное давление (ЭФД) , от которого зависит скорость клубочковой фильтрации, определяется разностью между ГДК (гидростатическое давление крови) в капиллярах клубочка (у человека от 60-90 мм.рт.ст.) и противодействующими ему факторами - онкотическим давлением белков плазмы крови (ОДК равно 30 мм.рт.ст.) и гидростатическим давлением жидкости (или ультрафильтрата) или в капсуле клубочка около 20 мм.рт.ст.

ЭФД= ГДК- (ОДК+ ГДУ)

ЭФД = 70 мм.рт.ст. - (30 мм.рт.ст.+ 20 мм.рт.ст.) = 20мм.рт.ст .

ЭФД может варьировать от 20 до 30 мм.рт.ст. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превышает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка. При повышении фильтрационного давления диурез увеличивается, при понижении - уменьшается. Давление крови в капиллярах клубочков и кровоток через них почти не изменяются, так как при повышении системного артериального давления тонус приносящей артериолы возрастает, а при понижении системного давления ее тонус уменьшается (эффект Остроумова - Бейлиса).

Факторы определяющие фильтрацию

Почечные факторы

К-во функционирующих клубочков

Диаметр приносящего и выносящего сосудов

Давление фильтрата в капсуле

Внепочечные факторы

Общее функциональное состояние системы кровообращения, к-во циркулирующей крови, величина АД и скорость кровотока

Степень гидратации организма. Осмотическое и онкотическое давление.

Функционирование других механизмов выведения мочи(потовые железы)

Количество первичной мочи - 150-180 л/сутки . Через почки в сутки протекает 1700 литров крови. Скорость клубочковой фильтрации 125 мл/мин у мужчин и 110мл/мин у женщин. Таким образом, около 180 литров в сутки. Средний общий объем плазмы в организме человека составляет примерно 3 л, это означает, что вся плазма фильтруется в почках около 60 раз в сутки. Способность почек фильтровать такой огромный объем плазмы дает возможность им экскретировать значительное количество конечных продуктов обмена веществ и очень точно регулировать элементный состав жидкостей внутренней среды организма.

II.КАНАЛЬЦЕВАЯ РЕАБСОРБЦИЯ

В почках человека за одни сутки образуется до 170 л фильтрата, а выделяется 1-1,5л конечной мочи, остальная жидкость всасывается в канальцах. Первичная моча изотонична плазме крови (т.е. это плазма крови без белков) Обратное всасывание веществ в канальцах состоит в том, чтобы вернуть все жизненно-важные вещества и в необходимых количествах из первичной мочи.

Объем реабсорбции = объем ультрафильтрата – объем конечной мочи.

Молекулярные механизмы, участвующие в осуществлении процессов реабсорбции те же, что и механизмы, действующие при переносе молекул через плазматические мембраны в других частях организма это диффузия, активный и пассивный транспорт, эндоцитоз и пр.

Есть два пути для движения реабсорбируемого вещества из просвета в интерстициальное пространство.

Первый - движение между клетками, т.е. через плотное соединение двух соседних клеток - это парацеллюлярный путь . Парацеллюлярная реабсорбция может осуществляться посредством диффузии или за счет переноса вещества вместе с растворителем. Второй путь реабсорбции - транцеллюлярный ("через" клетку). В этом случае реабсорбируемое вещество должно преодолеть две плазматические мембраны на своем пути из просвета канальца к интерстициальной жидкости - люминальную (или апекальную) мембрану, отделяющую жидкость в просвете канальца от цитоплазмы клеток, и базолатеральную (или контрлюминальную) мембрану, отделяющую цитоплазму от интерстициальной жидкости. Трансцеллюлярный транспорт определяется термином активный , для краткости, хотя пересечение, по меньшей мере, одной из двух мембран осуществляется посредством первично или вторично активного процесса. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида транспорта - первично-активный и вторично-активный . Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Этот транспорт обеспечивается энергией получаемой непосредственно при расщеплении молекул АТФ. Примером служит транспорт ионов Na, который происходит при участии Na + ,К + АТФазы, использующей энергию АТФ. В настоящее время известны следующие системы первично активного транспорта: Na + , K + - АТФаза; Н + -АТФаза; Н + ,К + -АТФаза и Са + АТФаза.

Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс, так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na + . Этот комплекс (переносчик + органическое вещество + Na +) способствует перемещению вещества через мембрану щеточной каемки и его поступление внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непосредственным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na + , К + -АТФазы, локализованной в латеральных и базальных мембранах клетки. Реабсорбция Nа + Cl - представляет наиболее значительный по объему и энергетическим затратам процесс.

Различные отделы почечных канальцев отличаются по способности всасывать вещества. С помощью анализа жидкостей из различных частей нефрона были установлены состав жидкости и особенности работы всех отделов нефрона.

Проксимальный каналец. Реабсорбция в проксимальном сегменте – облигатная (обязательная).В проксимальных извитых канальцах - реабсорбируется большая часть компонентов первичной мочи с эквивалентным количеством воды (объем первичной мочи уменьшается примерно на 2/3). В проксимальном отделе нефрона полностью реабсорбируются аминокислоты, глюкоза, витамины, необходимое количество белка, микроэлементы, значительное количество Na + , K + , Ca + , Mg + , Cl _ , HCO 2 . Проксимальный каналец играет главную роль в возвращении всех этих профильтровавшихся веществ в кровь с помощью эффективной реабсорбции. Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой может выделяться незначительное ее количество (не более 130 мг). Глюкоза движется против градиента из просвета канальца через люминальную мембрану в цитоплазму посредством системы котранспорта с натрием. Это движение глюкозы опосредовано участием переносчика и является вторично активным транспортом, поскольку энергия, необходимая для осуществления движения глюкозы через люминальную мембрану, вырабатывается за счет движения натрия по его электрохимическому градиенту, т.е. посредством котранспорта. Данный механизм котранспорта столь мощный, что позволяет полностью всасывать всю глюкозу из просвета канальца. После проникновения в клетку глюкоза должна преодолеть базолатеральную мембрану, что происходит посредством независимой от участия натрия облегченной диффузии, это движение по градиенту поддерживается за счет высокой концентрации глюкозы, накапливающейся в клетке, вследствие активности люминального процесса котранспорта. Чтобы обеспечить активную трансцеллюлярную реабсорбцию, функционирует система: с наличием 2 мембран, которые асиметричны по отношению к присутствию переносчиков глюкозы; энергия выделяется только при преодолении одной мембраны, в данном случае люминальной. Решающий фактор, состоит в том, что весь процесс реабсорбции глюкозы зависит в конечном счете от первично активного транспорта натрия. Вторично активной реабсорбции при котранспорте с натрием через люминальную мембрану, тем же способом что и глюкоза реабсорбируются аминокислоты , неорганический фосфат, сульфат и некоторые органические питательные вещества. Низкомолекулярные белки реабсорбируются путем пиноцитоза в проксимальном сегменте. Реабсорбция белка начинается с эндоцитоза (пиноцитоза) на люминальной мембране. Этот энергозависимый процесс инициируется связыванием молекул профильтровавшегося белка со специфическими рецепторами на люминальной мембране. Обособленные внутриклеточные пузырьки, появившиеся в ходе эндоцитоза, сливаются внутри клетки с лизосомами, чьи ферменты расщепляют белки до низкомолекулярных фрагментов - дипептидов и аминокислот, которые удаляются в кровь через базолатеральную мембрану. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболевании почек оно может возрастать до 50 г в сутки (протеинурия).

Увеличение выделения белков мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо фильтрации.

Неионная диффузия - слабые органические кислоты и основания плохо диссоциируют. Растворяются в липидном матриксе мембран и реабсорбируются по концентрационному градиенту. Степень их диссоциации зависит от рН в канальцах: при его снижении диссоциация кислотуменьшается , оснований повышается . Реабсорбция кислот увеличивается , оснований – уменьшается . При возрастании рН – наоборот. Это используют в клинике для ускорения выведения ядовитых веществ – при отравлении барбитуратами защелачивают кровь. Это увеличивает их содержание в моче.

Петля Генле . В петле Генле в целом всегда реабсорбируется больше натрия и хлора (около 25% фильтруемого количества), чем воды (10% объема профильтровавшейся воды). Это является важным отличием петли Генле от проксимального канальца, где вода и натрий реабсорбируются практически в равных пропорциях. Нисходящая часть петли не реабсорбирует натрий или хлор, но она обладает весьма высокой проницаемостью для воды и реабсорбирует ее. Восходящая же часть(как тонкий, так и толстый ее участок) реабсорбирует натрий и хлор и практически не реабсорбирует воду, поскольку она совершенно не проницаема для нее. Реабсорбция хлорида натрия восходящей частью петли отвечает за реабсорбцию воды в нисходящей ее части, т.е. переход хлорида натрия из восходящей части петли в интерстициальную жидкость увеличивает осмолярность этой жидкости, а это влечет за собой большую реабсорбцию воды посредством диффузии из водопроницаемой нисходящей части петли. Поэтому этот участок канальца получил название разводящий сегмент. В результате жидкость будучи уже гипоосмотичной в восходящей толстой части петли Генле(вследствие выхода натрия), поступает в дистальный извитой каналец, где продолжается процесс разведения и она становится еще более гипоосмотичной, так как в последующих отделах нефрона органические вещества не всасываются в них реабсорбируются только ионы и Н 2 О. Таким образом, можно утверждать, что дистальный извитой каналец и восходящая часть петли Генле функционируют как сегменты, где происходит разведение мочи. По мере продвижения по собирательной трубке мозгового вещества канальцевая жидкость становится все более и более гиперосмотичной, т.к. реабсорбция натрия и воды продолжается и в собирательных трубках, в них происходит формирование конечной мочи (концентрированной, за счет регулируемой реабсорбции воды и мочевины. Н 2 О переходит в интерстициальное вещество согласно законам осмоса, т.к. там более высокая концентрация веществ. Процент реабсорбции воды может широко варьировать в зависимости от водного баланса данного организма.

Дистальная реабсорбция. Факультативная, регулируемая.

Особенности :

1. Стенки дистального сегмента плохо проницаемы для воды.

2. Здесь активно реабсорбируется натрий.

3. Проницаемость стенок регулируется : для воды - антидиуретическим гормоном, для натрия - альдостероном.

4.Происходит процесс секреции неорганических веществ.

Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь.

Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода.

Альдостерон стимулирует реабсорбцию Na+ и экскрецию K+ и H+ в почечные канальцы в дистальном отделе нефрона, в дистальном канальце и кортикальных собирательных трубочках .

Вазопрессин способствует реабсорбции воды из дистальных извитых канальцев и собирательных трубок.

С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+/K+-АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Величине максимального канальцевого транспорта соответствует старое понятие "почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления. Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом, совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом, ее экскреция зависит от диуреза.

Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся - в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой. Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода реабсорбируется во всех отделах нефрона пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+/K+-АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них - это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода - наружу. Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+/К+-АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы. После прохождения проксимального отрезка канальца изотоничный фильтрат в уменьшенном объеме поступает в петлю Генле. В этом участке интенсивная реабсорбция натрия не сопровождается реабсорбцией воды, так как стенки этого отрезка мало проницаемы для воды даже под воздействием АДГ. В связи с этим наступают разведение мочи в просвете нефрона и концентрация натрия в интерстиции. Разведенная моча в дистальном отделе канальца теряет избыток жидкости, становясь изотоничной плазме. Уменьшенный объем изотоничной мочи поступает в собирательную систему, идущую в мозговом слое, высокое осмотическое давление в интерстиции которого обусловлено повышенной концентрацией натрия. В собирательных трубочках под влиянием АДГ продолжается обратное всасывание воды в соответствии с концентрационным градиентом. Проходящие в мозговом слое vasa recta функционируют как противоточно-обменные сосуды, забирающие по пути к сосочкам натрий и отдающие его до возвращения к корковому слою. В глубине мозгового слоя таким путем поддерживается высокое содержание натрия, обеспечивающее резорбцию воды из собирательной системы и концентрацию мочи.

Функциями канальцевого аппарата почки (включающего в себя проксимальный каналец, петлю нефрона, дистальный каналец и собирательные трубочки) являются:

— реабсорбция части профильтровавшихся в клубочке органических и неорганических веществ;

— секреция в просвет канальца веществ, содержащихся в крови или образующихся в клетках канальцев,

— концентрирование мочи.

Реабсорбция – это обратное всасывание различных веществ из просвета канальцев в плазму перитубулярных капилляров. Реабсорбция происходит во всех отделах канальцев нефрона, в собирательной трубочке и определяется особенностями строения канальцевого эпителия почек. Поверхность клеток проксимального извитого канальца, обращенная в его просвет имеет покрытую гликокаликсом густую щеточную каемку, которая в 40 раз увеличивает площадь контакта мембраны с канальцевой жидкостью. Под щеточной каемкой между клетками имеются проницаемые плотные соединения.

Апикальную часть плазмолеммы называют также люминальной, она обладает высокой ионной проницаемостью, содержит различные белки-переносчики и обеспечивает преимущественно пассивный транспорт различных веществ.

Базолатеральная часть клетки увеличена за счет складчатости мембраны и содержит большое число митохондрий, что определяет сосредоточенность в ней систем активного транспорта (ионных насосов).

Пороговая реабсорбция отражает зависимость всасывания вещества от его концентрации в плазме крови. Если концентрация вещества в плазме не превышает определенный пороговый уровень, то это вещество будет полностью реабсорбировано в канальцах нефрона, если же превышает – то реабсорбируется не полностью и появляется в конечной моче, что связано с максимальным насыщением переносчиков.

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции . Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.

Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.

Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы : проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.

В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na+.

Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы через базолатерального мембрану. Это обеспечивает постоянное отток ионов. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды. Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na+ в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.

Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na+. В апикальной мембране клеток есть специальные транспортеры. Это белки с молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na+. На противоположной стороне клетки комплекс Na — глюкоза — переносчик распадается на три элемента . Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.

В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль/л (около 1,8 г/л) мощность транспортных систем становится недостаточной для реабсорбции. Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы. До концентрации ее 3,5 г/л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г/л , выведение глюкозы с мочой становится прямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль/мин (375 мг/мин) глюкозы, а у женщин — 1, 68 ммоль/мин (303 мг/мин) из расчета на 1,73 м2 поверхности тела.

Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда — в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию — перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.

Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную мочу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда — в кровеносные капилляры. Таким путем может реабсорбуватися до ЗО мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).

Канальцевая секреция. В современной физиологической литературе, касающейся деятельности почек, термин секреция имеет два значения. Первое из них описывает процесс переноса вещества через клетки из крови в просвет канальца в неизменном виде, что увеличивает скорость экскреции вещества почкой. Второе - выделение из клетки в кровь или в просвет канальца синтезированных в почке физиологически активных веществ (например, простагландины, брадикинин и др.) или экскретируемых веществ (например, гиппуровая кислота).

Секреция органических и неорганических веществ - один из важных процессов, обеспечивающих процесс мочеобразования. У рыб некоторых видов в почке отсутствуют клубочки. В таких случаях секреция играет ведущую роль в деятельности почки. В почках большинства других классов позвоночных, в том числе и у млекопитающих, секреция обеспечивает выделение из крови в просвет канальцев дополнительных количеств некоторых веществ, которые могут фильтроваться ив почечных клубочках.

Таким образом, секреция ускоряет выделение почкой некоторых чужеродных веществ, конечных продуктов обмена, ионов. В почке у млекопитающих секретируются органические кислоты (пенициллин, парааминогиппуровая кислота - ПАГ, диодраст, мочевая кислота), органические основания (холин, гуанидин), неорганические вещества (калий). Почка гломерулярных и агломерулярных морских костистых рыб способна к секреции ионов магния, кальция, сульфатов. Различаются места секреции разных веществ. В почке всех позвоночных местом секреции органических кислот и оснований служат клетки проксимального сегмента нефрона, особенно его прямой части, секреция калия преимущественно происходит в клетках дистального извитого канальца и собирательных трубок.

Механизм процесса секреции органических кислот. Рассмотрим этот процесс на примере выделения почкой ПАГ. После введения в кровь ПАГ ее секреция почкой нарастает и очищение от нее крови значительно превышает величину очищения крови от одновременно введенного инулина. Это означает, что ПАГ не только фильтруется в клубочках, но и помимо клубочков в просвет нефрона поступают значительные ее количества. Экспериментально было показано, что такой процесс обусловлен секрецией ПАГ из крови в просвет проксимальных отделов канальцев. В мембране клетки этого канальца, обращенной к межклеточной жидкости, имеется переносчик (котранспортер), обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс переносчика с ПАГ, который перемещается в мембране и на ее внутренней поверхности распадается, высвобождая ПАГ в цитоплазму, а переносчик приобретает снова способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Механизм секреции органических кислот включает ряд этапов. В базальной плазматической мембране имеется Na+, K+-АТФаза, которая удаляет из клетки ионы Na+ и способствует поступлению в клетку ионов К+. Более низкая концентрация в цитоплазме ионов Na+ позволяет поступать внутрь клетки ионам Na+ по градиенту концентрации при участии натриевых котранспортеров. Один из типов такого котранспортера способствует поступлению через базальную плазматическую мембрану α-кетоглутарата и Na+. В этой же мембране имеется анионный обменник, который удаляет из цитоплазмы α-кетоглутарат в обмен на поступающий из межклеточной жидкости в клетку парааминогиппурат (ПАГ), диодраст или некоторые иные органические кислоты. Это вещество движется по клетке в сторону люминальной мембраны и через нее проходит в просвет канальца по механизму облегченной диффузии.

Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования динитрофенолом снижает и прекращает секрецию. В обычных физиологических условиях уровень секреции зависит от числа переносчиков в мембране. Секреция ПАГ возрастает пропорционально увеличению концентрации ПАГ в крови до тех пор, пока все молекулы переносчика не насытятся ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, равно количеству молекул переносчика, которые могут образовывать комплекс с ПАГ. Эта величина определяется как максимальная способность к транспорту ПАГ - Ттран. Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и через нее специальным механизмом выделяется в просвет канальца.


Билет 15

Предыдущая3456789101112131415161718Следующая

ПОЧКИ И ИХ ФУНКЦИИ

Канальцевая реабсорбция

Начальный этап мочеобразования, приводящий к фильтрации всех низкомолекулярных компонентов плазмы крови, неизбежно должен сочетаться с существованием в почке систем, реабсорбирующих все ценные для организма вещества. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0-1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. Проведенные на животных опыты с извлечением микропипеткой жидкости из различных участков нефрона позволили выяснить особенности реабсорбции различных веществ в разных частях почечных канальцев (рис. 12.6). В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, СI-,НСОз. В последующих от делах нефрона всасываются преимущественно электролиты и вода.

Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной мочи уменьшается, и в начальный отдел петли нефрона поступает около ‘/з профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается до 25 %, в дистальном извитом канальце - около 9 %, и менее 1% реабсорбируется в собирательных трубках или экскретируется с мочой.

Реабсорбция в дистальном сегменте характеризуется тем, что клетки переносят меньшее, чем в проксимальном канальце, количество ионов, но против большего градиента концентрации. Этот сегмент нефрона и собирательные трубки играют важнейшую роль в регуляции объема выделяемой мочи и концентрации в ней осмотически активных веществ (осмотическая концентрация1). Б конечной моче концентрация натрия может снижаться до 1 ммоль/л по сравнению со 140 ммоль/л в плазме крови. В дистальном канальце калий не только реабсорбируется, но и секретируется при его избытке в организме.

В проксимальном отделе нефрона реабсорбция натрия, калия, хлора и других веществ происходит через высокопроницаемую для воды мембрану стенки канальца. Напротив, в толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца; проницаемость мембраны для воды в отдельных участках нефрона и собирательных трубках может регулироваться, а.величина проницаемости изменяется в зависимости от функционального состояния организма (факультативная реабсорбция). Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона. Это особенно отчетливо проявляется в случае увеличения объема крови и внеклеточной жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды и тем самым - восстановлению водно-солевого равновесия. В проксимальном канальце всегда сохраняется изоосмия. Стенка канальца проницаема для воды, и объем реабсорбируемой воды определяется количеством реабсорбируемых осмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином.

Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.

Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения.

Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол. Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Физиологический смысл этого явления будет раскрыт при описании механизма реабсорбции.

Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта - первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.

Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта - по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.

Достижения в области молекулярной биологии позволили установить строение молекул ионных и водных каналов (аквапоринов) рецепторов, аутакоидов и гормонов и тем самым проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Различны свойства клеток разных отделов нефрона, неодинаковы свойства цитоплазматической мембраны в одной и той же клетке. Апикальная мембрана клетки, обращенная в просвет канальца, имеет иные характеристики, чем ее базальная и боковые мембраны, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному; специфично и действие биологически активных веществ на ту и другую мембраны.

Клеточный механизм реабсорбции ионов рассмотрим на примере Na+. В проксимальном канальце нефрона всасывание Na+ в кровь происходит в результате ряда процессов, один из которых - активный транспорт Na+ из просвета канальца, другой - пассивная реабсорбция Na+ вслед за активно транспортируемыми в кровь как ионами гидрокарбоната, так и С1-. При введении одного микроэлектрода в просвет канальцев, а второго - в околоканальцевую жидкость было выявлено, что разность потенциалов между наружной и внутренней поверхностью стенки проксимального канальца оказалась очень небольшой - около 1,3 мВ, в области дистального канальца она может достигать- 60 мВ (рис.12.7). Просвет обоих канальцев электроотрицателен, а в крови (следовательно, и во внеклеточной жидкости), концентрация Na+ выше, чем в жидкости, находящейся в просвете этих канальцев, поэтому реабсорбция Na+ осуществляется активно против градиента электрохимического потенциала. При этом из просвета канальца Na+ входит в клетку по натриевому каналу или при участии переносчика. Внутренняя часть клетки запряжена отрицательно, и положительно заряженный Na+ поступает в клетку по градиенту потенциала, движется в сторону базальной плазматической мембраны, через которую натриевым насосом выбрасывается в межклеточную жидкость; градиент потенциала на этой мембране достигает 70-90 мВ.

Имеются вещества, которые могут влиять на отдельные элементы системы реабсорбции Na+. Так, натриевый канал в мембране клетки дистального канальца и собирательной трубки блокируется амилоридом и триамтереном, в результате чего Na+ не может войти в канал. Б клетках имеется несколько типов ионных насосов.

Канальцевая реабсорбция и ее регуляция

Один из них представляет собой Na+, К+-АТФазу. Этот фермент находится в базальной и латеральных мембранах клетки и обеспечивает транспорт Na+ из клетки в кровь и поступление из крови в клетку К+. Фермент угнетается сердечными гликозидами, например строфантином, уабаином. В реабсорбции гидрокарбоната важная роль принадлежит ферменту карбоангидразе, ингибитором которого является ацетазоламид -он прекращает реабсорбцию гидрокарбоната, который экскретируется с мочой.

Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное ее количество (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальной) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Na+, после чего комплекс транспортируется через апикальную мембрану, т. е. в цитоплазму поступают глюкоза и Na+. Апикальная мембрана отличается высокой селективностью и односторонней проницаемостью и не пропускает ни глюкозу, ни Na+ обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, a Na+, как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.

Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из этих аминокислот начинается усиленная экскреция почкой аминокислот только данной группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот (аминоацидурия).

Выделение с мочой слабых кислот и оснований зависит от их клубочковой фильтрации, процесса реабсорбции или секреции. Процесс выведения этих веществ во многом определяется «неионной диффузией», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Слабые кислоты и основания могут существовать в зависимости от рН среды в двух формах - неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большей скоростью экскретируются с щелочной мочой, а слабые основания, напротив, - с кислой. Степень ионизации оснований увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества через липиды мембран проникают в клетки, а затем в плазму крови, т. е. они реабсорбируются. Если значение рН канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой. Никотин - слабое основание, при рН 8,1 ионизируется 50 %, в 3-4 раза быстрее экскретируется с кислой (рН около 5), чем с щелочной (рН 7,8) мочой. Процесс «неионной диффузии» влияет на выделение почками слабых оснований и кислот, барбитуратов и других лекарственных веществ.

Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20-75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.

Определение величины реабсорбции в канальцах почки. Обратное всасывание веществ, или, иными словами, их транспорт (Т) из просвета канальцев в тканевую (межклеточную) жидкость и в кровь, при реабсорбции R (TRX) определяется по разности между количеством вещества X (F∙Px∙fx), профильтровавшегося в клубочках, и количеством вещества, выделенного с мочой (UX ∙V).

TRX =F∙px.fx ─Ux∙V,

где F - объем клубочковой фильтрации, fx - фракция вещества X, не связанная с белками в плазме по отношению к его об щей концентрации в плазме крови, Р - концентрация вещества в плазме крови, U - концентрация вещества в моче.

По приведенной формуле рассчитывают абсолютное количество реабсорбируемого вещества. При вычислении относительной реаб-сорбции (% R) определяют долю вещества, подвергшуюся обратному всасыванию по отношению к количеству вещества, профильтровавшегося в клубочках:

% R= (1 - EFX)∙100.

Для оценки реабсорбционной способности клеток проксимальных канальцев важное значение имеет определение максимальной величины транспорта глюкозы (TmG). Эту величину измеряют при полном насыщении глюкозой системы ее канальцевого транспорта (см. рис. 12.5). Для этого вливают в кровь раствор глюкозы и тем самым повышают ее концентрацию в клубочковом фильтрате до тех пор, пока значительное количество глюкозы не начнет выделяться с мочой:

TmG=F∙PG-UG∙ V,

где F - клубочковая фильтрация, РG - концентрация глюкозы в плазме крови, a UG - концентрация глюкозы в моче; Тт - максимальный канальцевый транспорт изучаемого вещества. Величина ТmG характеризует полную загрузку системы транспорта глюкозы; у мужчин эта величина равна 375 мг/мин, а у женщин - 303 мг/мин при расчете на 1,73 м2 поверхности тела.

Канальцевая реабсорбция

Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 — 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

Канальцевая реабсорбция — это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

Схема канальцевой реабсорбации

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ — АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Ма4′. Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны.

В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков.

В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкозурия). Эта ситуация характеризуется понятием " максимальный канальцевый транспорт" (Тм). Величине максимального канальцевого транспорта соответствует старое понятие " почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и аминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот.

Канальцевая реабсорбция

Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20-75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления.

Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся — в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой.

Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% — в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме Того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% — в петле нефрона, 9% — в дистальном извитом канальце и 1% — в собирательных трубочках.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ — АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них — это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода — наружу.

Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, К+ — АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы.

Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови.

В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной.

Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na" 1" и мочевины, и моча становится все более концентрированной.

При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.

Канальцевая реабсорбция и секреция веществ в нефроне.

КАНАЛЬЦЕВАЯ РЕАБСОРБЦИЯ или обратное всасывание в кровь, содержащихся в первичной моче, воды, солей, органических веществ (глюкозы, белка, аминокислот, витаминов).

Результатом является уменьшение первичной мочи (на 70%), полное обратное всасывание в кровь полезных для метаболизма веществ (аминокислот, глюкозы, многих витаминов), частичное всасывание воды и ионов Na, Cl, K, Ca, выделение из крови в мочу токсических продуктов метаболизма (мочевины, мочевой кислоты, аммиака, креатинина, сульфатов, фосфатов).

Всасывание основных веществ осуществляется при помощи механизмов активного транспорта, диффузии и облегченной диффузии.

Например:

Главный ион, определяющий осмотическое давление, и, следовательно, реабсорбцию воды, Na+ входит в эпителиальные клетки пассивно, по градиенту концентрации, а затем выбрасывается с другой стороны клетки Na+-К+-АТФ-азой.

Ионы К+ реабсорбируются активно на апикальной мембране и затем выходят в кровь за счет диффузии.

В проксимальных извитых канальцах реабсорбируется 70% воды и ионов.

Реабсорбция катионов (Na+, K+, Ca2+, Mg2+) происходит против градиента концентраций, активно (с использованием энергии АТФ).

Отрицательно заряженные анионы притягиваются положительно заряженными катионами, и за счет электростатических сил поступают из мочи в кровь пассивно (Cl- и HCO3- вслед за Na+ и K+; SO42- и PO42- за Ca2+ и Mg2+), вода всасывается пассивно вслед за ионами по осмотическому градиенту.

Механизмы реабсорбции Ca2+, Mg2+, SO4-, PO4- сходны с механизмами реабсорбции Na+, K+ и Cl-.

Вещества могут переносятся в цитоплазму почечной эпителиальной клетки переносчиками совместно с ионами Na+.

При этом из эпителиальной клетки в кровь они поступают с помощью диффузии по градиенту концентрации.

При определенной концентрации веществ крови (порог выведения) эти вещества (пороговые) не будут полностью реабсорбироваться, и часть профильтровавшихся веществ окажется в конечной моче.

К пороговым веществам относится глюкоза, которая в норме (4,6-7,2 ммоль/л в крови) фильтруется, а затем полностью реабсорбируется.

При увеличении ее концентрации в крови до 10,8 ммоль/л часть глюкозы не будет успевать реабсорбироваться.

Она выделяется с мочой из организма и возникает глюкозурия.

РЕАБСОРБЦИЯ в различных участках нефрона неодинакова.

В ПРОКСИМАЛЬНОМ ОТДЕЛЕ реабсорбируются 40-45 % воды, натрия, бикарбонаты, хлор, аминокислоты, глюкоза, витамины, белки, микроэлементы к концу отдела — остается 1/3 ультрафильтрата с таким же осмотическим давлением как в плазме.

В ПЕТЛЕ ГЕНЛЕ реабсорбируется 25-28% воды, до 25% натрия, а также ионы хлора, калия, кальция, магния

В ДИСТАЛЬНОМ ОТДЕЛЕ — 10% воды, около 9% натрия, калия.

В СОБИРАТЕЛЬНЫХ ТРУБОЧКАХ — 20% воды, менее 1% натрия.

КАНАЛЬЦЕВАЯ СЕКРЕЦИЯ проявляется ВЫДЕЛЕНИЕМ из крови в ПРОСВЕТ КАНАЛЬЦЕВ продуктов обмена и чужеродных веществ

Канальцевая секреция является результатом активной деятельности ЭПИТЕЛИЯ почечных канальцев.

Она осуществляется против концентрационного или электрохимического градиента и позволяет быстро экскретировать органические основания и ионы, ЭПИТЕЛИАЛЬНЫЕ КЛЕТКИ секретируют из КРОВИ Холин, парааминогиппуровую кислоту, Видоизмененные молекулы лекарственных веществ и поглощают из ПЕРВИЧНОЙ МОЧИ Глютамин.

С помощью фермента глютаминазы РАСЩЕПЛЯЮТ глютамин на ГЛЮТАМИНОВУЮ КИСЛОТУ и АММИАК.

АММИАК выделяется в мочу, который выносится из организма в виде АММОНИЙНЫХ СОЛЕЙ.

Там же расщепляется Угольная кислота ферментом КАРБОАНГИДРАЗОЙ.

Как проходит процесс реабсорбции в почках

Ионы HСО3- всасываются в кровь (за счет электростатического притяжения их Na+ и К+).

Ионы H+ секретируются в мочу, с которой удаляются.

Этим объясняется кислая реакция конечной мочи (pH=4,5-6,5).

Этот механизм ПРЕДОХРАНЯЕТ организм от ЗАКИСЛЕНИЯ.

ЛОКАЛИЗАЦИЯ СЕКРЕЦИИ ВЕЩЕСТВ В НЕФРОНЕ различна

В ПРОКСИМАЛЬНОМ ОТДЕЛЕ секретируются Ионы водорода и Аммиак. Причем в извитой части секретируются органические основания:

Холин, Серотонин, Допамин, Хинин, морфин.

В прямой части – органические кислоты: парааминогиппуровая, Диодраст, Пенициллин, Мочевая кислота.

В ДИСТАЛЬНОМ ОТДЕЛЕ – парааминогиппуровая кислота, Аммиак, Ионы H+ и К+.

ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА выводятся из организма с помощью КЛУБОЧКОВОЙ ФИЛЬТРАЦИИ (левомицетин, стрептомицин, тетрациклин, неомицин, канамицин и др. антибиотики).

С помощью КАНАЛЬЦЕВОЙ СЕКРЕЦИИ выводится пенициллин (на 80-90 %).

при ПОРАЖЕНИИ различных отделов НЕФРОНА ряд ЛЕКАРСТВЕННЫХ соединений длительно циркулируют в крови и могут не выделяться из организма.

В этих случаях НЕОБХОДИМО изменение дозировок ЛЕКАРСТВЕННЫХ веществ.