Наиболее заметная теория о том, как началась Вселенная Большого Взрыва, где вся материя сначала существовала как сингулярность, бесконечно плотная точка в крошечном пространстве. Потом что-то привело ее к взрыву. Материя расширилась с невероятной скоростью и в конечном итоге сформировала Вселенную, которую мы видим сегодня.

Большое Сжатие, как вы могли догадаться, противоположность Большого Взрыва. Все, что разлетелось по краям Вселенной, под воздействием силы тяжести будет сжиматься. Согласно этой теории, гравитация замедлит расширение, вызванное Большим Взрывом и в конечном итоге все вернется обратно в точку.

  1. Неизбежная тепловая смерть Вселенной.

Подумайте о тепловой смерти, как полной противоположности Большому Сжатию. В этом случае, сила тяжести не достаточно сильна, чтобы преодолеть расширение, так как Вселенная просто держит курс на расширение в геометрической прогрессии. Галактики отдаляться друг от друга, как несчастные влюбленные, и всеохватывающая ночь между ними становится все шире и шире.

Вселенная подчиняется тем же правилам, как и любая термодинамическая система, что в конечном итоге приведет нас к тому, что тепло равномерно распределится по всей Вселенной. Наконец, вся Вселенная погаснет.

  1. Тепловая смерть от Черных дыр.

Согласно популярной теории, большинство материи во Вселенной вращается вокруг черных дыр. Просто посмотрите на галактики, которые содержат сверхмассивные черные дыр в их центрах. Большая часть теории черной дыры предполагает поглощение звезд или даже целых галактик, как они попадают в горизонт событий дыры.

В конце концов, эти черные дыры поглотят большую часть материи, и мы останемся в темной Вселенной.

  1. Конец Времени.

Если что-то вечное, то это, безусловно, время. Есть ли Вселенная или нет, время все равно идет. В противном случае, не было бы никакого способа, чтобы различить один момент из следующего. Но что, если время упущено и просто замерло? Что делать, если не будет больше моментов? Просто один и тот же момент времени. Навсегда.

Предположим, что мы живем во Вселенной, время в которой никогда не заканчивается. С бесконечным количеством времени, все, что может случиться происходит со 100-процентной вероятностью. Парадокс же произойдет, если у вас есть вечная жизнь. Вы живете бесконечное время, поэтому все, что можно гарантированно произойдет (и произойдет бесконечное количество раз). Остановка времени тоже может случится.

  1. Большое Столкновение.

Большое Столкновение похоже на Большое Сжатие, но гораздо более оптимистично. Представьте себе, тот же сценарий: Гравитация замедляет расширение Вселенной и все сжимается обратно в одну точку. В этой теории, сила этого быстрого сжатия достаточна, чтобы начать еще один Большой Взрыв, и Вселенная начинается снова.

Физикам не нравится это объяснение, так что некоторые ученые утверждают, что, возможно, Вселенная не пройдет весь путь обратно к сингулярности. Вместо этого, она сожмется очень сильно, а затем оттолкнется от силы, подобной той, что отталкивает мяч, когда вы его ударяете об пол.

  1. Большой Разрыв.

Независимо от того, как заканчивается мир, ученые пока не чувствуют необходимость использовать (ужасно заниженное) слово «большой», чтобы описать его. В этой теории, невидимая сила называется «темная энергия», она вызывает ускорение расширения Вселенной, что мы и наблюдаем. В конце концов, скорости вырастут настолько, что материя начнет рваться на мелкие частицы. Но есть и светлая сторона этой теории, по крайней мере Большого Разрыва придется ждать еще 16 миллиардов лет.

  1. Эффект Метастабильности Вакуума.

Эта теория зависит от идеи, что существующая Вселенная находится в крайне нестабильном состоянии. Если вы посмотрите на значения квантовых частиц физики, то можно сделать предположение, что наша Вселенная находится на грани устойчивости.

Некоторые ученые предполагают, что миллиарды лет спустя, Вселенная будет на грани разрушения. Когда это произойдет, в какой-то момент во Вселенной, появится пузырь. Подумайте об этом как об альтернативной Вселенной. Этот пузырь будет расширяться во всех направлениях со скоростью света, и уничтожать все, к чему прикасается. В конце концов, этот пузырь уничтожит все во Вселенной.

  1. Временной Барьер.

Потому что законы физики не имеют смысла в бесконечной мультивселенной, единственный способ понять эту модель это предположить, если что есть реальная граница, физическая граница Вселенной, и ничто не может выйти за пределы. И в соответствии с законами физики, в ближайшие 3,7 млрд лет, мы пересечем временной барьер, и Вселенная кончится для нас.

  1. Это не случится (потому что мы живем в мультивселенной).

По сценарию мультивселенных, с бесконечными Вселенными, эти Вселенные могут возникать в или из существующих. Они могут возникать из Больших Взрывов, уничтожаться Большими Сжатиями или Разрывами, но это не имеет никакого значения, так как новых Вселенных всегда будет больше, чем уничтоженных.

  1. Вечная Вселенная.

Ах, вековая идея, что Вселенная всегда была, и всегда будет. Это одна из первых концепций, которую люди, создали о природе Вселенной, но есть и новый виток в этой теории, что звучит немного интересней, ну, серьезно.

Вместо сингулярности и Большого Взрыва, который положил начало самого времени, время мог существовать раньше. В этой модели, Вселенная циклична, и будет продолжать расширяться и сжиматься всегда.

В ближайшие 20 лет мы с большей уверенностью сможем сказать, какая из этих теорий наиболее соответствует реальности. И возможно, найдем ответ на вопрос, как наша Вселенная начиналась и как она закончится.

«Смотри - лучи солнца, не могут пробиться сквозь серое небо
и все твои мысли, молитвы о помощи...
Пути пройдены, нам некуда бежать. И осторожно, касаясь пальцем звезд,
Я понимаю … но, неизбежно то, что слишком поздно…»

Английский физик Уильям Томсон (лорд Кельвин), один из основателей термодинамики в 1852 году выдвинул гипотезу о тепловой смерти Вселенной.

"Тепловая смерть" - это термин в термодинамике, описывающий конечное состояние любой замкнутой термодинамической системы, когда все виды энергии переходят в тепловую энергию. При этом термодинамическая энтропия системы максимальна.

Тогда «тепловая смерть Вселенной» это состояние Вселенной, когда все виды энергии в ней перейдут в энергию теплового движения, которая равномерно распределится по всей Вселенной. После этого все термодинамические процессы во Вселенной должны прекратиться.

Томсон считал, что материальная Вселенная, то есть звезды, планеты и прочие небесные тела, является единой, замкнутой, изолированной системой. Ведь другой такой же Вселенной нет. А если так, то второе начало термодинамики полностью применимо ко всему космосу и, стало быть, в конце концов наш разнообразный и веселый мир ждет унылая «тепловая смерть»...

В 1865 году известный физик Р. Клаузиус , основываясь на втором законе термодинамики сделал теоретический вывод о тепловой смерти Вселенной. Согласно второму началу термодинамики, любая замкнутая физическая система, т. е. не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию, т.е. к состоянию теплового равновесия, что соответствует максимуму энтропии.

Рудольф Клаузиус утверждал, что хотя энергия некоторой системы и остается постоянной (первое начало термодинамики), однако с течением времени она лишается способности к превращениям, а значит и способности совершать работу. Это означает, что всякая термодинамическая система со временем "деградирует", наступает "тепловая смерть".

Он согласился с выводом Томсона и написал: «.. энтропия Вселенной стремится к некоторому максимуму. Чем больше Вселенная приближается к этому предельному состоянию, ...тем больше исчезают поводы к дальнейшим изменениям, а если это состояние было бы наконец-то достигнуто, то больше не происходило бы никаких дальнейших изменений, и Вселенная находилась бы в некотором мертвом состоянии инерции».

Теория «тепловой смерти» находилась в противоречии с ньютоновской вечной Вселенной. Действительно, если рассмотреть Вселенную как изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею уже максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Попытка избежать указанного противоречия гипотезы тепловой смерти Вселенной была предпринята Больцманом , который предположил, что у системы и в состоянии термодинамического равновесия могут наблюдаться небольшие изменения - флуктуации термодинамических параметров (температуры, давления, объема).

Вселенная с энергетической точки зрения уже мертва, но отдельные ее области подвержены флуктуациям.

И наша часть бесконечной Вселенной, все пространство, до которого достигает взгляд человека, находится в режиме огромной, ныне затухающей флуктуации. А если считать, что наблюдаемая Вселенная является следствием такой флуктуации, то противоречия парадокса о тепловой смерти Вселенной исчезают.

В 1909 году против тепловой смерти выступил известный шведский ученый Сванте Август Аррениус , занимавшийся вопросами образования и эволюции небесных тел.

Аррениус писал: «Если бы Клаузиус был прав, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало; это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, - ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения».

В 20 веке Общая Теория Относительности А. Эйнштейна разрешила многие противоречия, существовавшие в классической физике.

Однако и в наше время в науке нет единого мнения о строении Вселенной и ее возникновении. Хотя современной космологией однозначно установлено , что Вселенная, возраст которой определен в 13,72 млрд лет, не стационарна.

Среди ученых не утихают споры о будущем Вселенной, о ее «бесконечном расширении», о существовании «скрытой материи», огромное количество которой может опровергнуть современные представления о свойствах Вселенной.

А понятие «тепловой смерти Вселенной» стало первым шагом к осознанию возможной конечности существования Вселенной, хотя и неизвестно, когда и по какому сценарию возможна её гибель.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение

Высшего профессионального образования

Российский государственный торгово-экономический университет

УФИМСКИЙ ИНСТИТУТ

Факультет юриспруденции и заочного обучения

Заочное обучение (5,5 лет)

Специальность "Бухгалтерский учет анализ и аудит"

Курсовая работа

По предмету: Концепции современного естествознания

Фамилия: Ситдикова

Имя: Эльвира

Отчество: Закиевна

Контрольная работа выслана в университет

Фамилия преподавателя: Хамидуллин Явдат Накипович

Введение

1.1 Появление идеи Т.С.В.

2. Закон возрастания энтропии

2.2 Возможность энтропии во Вселенной

3. Тепловая смерть Вселенной в научной картине Мира\

3.1 Термодинамический парадокс

3.2 Термодинамический парадокс в релятивистских космологических моделях

3.3 Термодинамический парадокс в космологии и постнеклассическая картина мира

Заключение

Литература

Введение

Тепловая смерть Вселенной (Т.С. В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. Такое состояние соответствовало бы Т. С.В. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о Т. С.В. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о Т.С.В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего тяготение. С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной - к Т. С.В. Вселенная всегда нестатична и непрерывно эволюционирует. Термодинамический парадокс в космологии, сформулированный во второй половине ХIХ века, непрерывно будоражит с тех пор научное сообщество. Дело в том, что он затронул наиболее глубинные структуры научной картины мира. Хотя многочисленные попытки разрешения этого парадокса приводили всегда лишь к частным успехам, они порождали новые, нетривиальные физические идеи, модели, теории. Термодинамический парадокс выступает неиссякаемым источником новых научных знаний. Вместе с тем, его становление в науке оказалось опутанным множеством предубеждений и совершенно неверных интерпретаций. Необходим новый взгляд на эту, казалось бы, довольно хорошо изученную проблему, которая приобретает нетрадиционный смысл в постнеклассической науке.

1. Идея Тепловой смерти Вселенной

1.1 Появление идеи Т.С.В.

Угроза тепловой смерти Вселенной, как мы уже говорили ранее, была высказана в середине ХIХ в. Томсоном и Клаузиусом, когда был сформулирован закон возрастания энтропии в необратимых процессах. Тепловая смерть - это такое состояние вещества и энергии во Вселенной, когда исчезли градиенты параметров, их характеризующих. Развитие принципа необратимости, принципа возрастания энтропии состояло в распространении этого принципа на Вселенную в целом, что и было сделано Клаузиусом.

Итак, согласно второму началу все физические процессы протекают в направлении передачи тепла от более горячих тел к менее горячим, а это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, в будущем ожидается исчезновение температурных различий и превращение всей мировой энергии в тепловую, равномерно распределенную во Вселенной. Вывод Клаузиуса был следующим:

1. Энергия мира постоянна

2. Энтропия мира стремится к максимуму.

Таким образом, тепловая смерть Вселенной означает полное прекращение всех физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией.

Больцман, открывший связь энтропии S и статистического веса P, считал, что нынешнее неоднородное состояние Вселенной есть грандиозная флуктуация*, хотя ее возникновение имеет ничтожно малую вероятность. Современники Больцмана не признавали его взглядов, что привело к жестокой критике его работ и, по-видимому, привело к болезненному состоянию и самоубийству Больцмана в 1906 г.

Обратившись к исходным формулировкам идеи тепловой смерти Вселенной, можно видеть, что они далеко не во всем соответствуют их хорошо известным интерпретациям, сквозь призму которых эти формулировки нами обычно воспринимаются. Принято говорить о теории тепловой смерти или термодинамическом парадоксе В. Томсона и Р. Клаузиуса.

Но, во-первых, соответствующие мысли этих авторов далеко не во всем совпадают, во-вторых, в приводимых ниже высказываниях ни теории, ни парадокса не содержится.

В. Томсон, анализируя проявляющуюся в природе общую тенденцию к рассеянию механической энергии, не распространял ее на мир как целое. Он экстраполировал принцип возрастания энтропии лишь на протекающие в природе крупномасштабные процессы. Напротив, Клаузиус предложил экстраполяцию этого принципа именно на Вселенную как целое, выступавшую для него всеобъемлющей физической системой. По словам Клаузиуса "общее состояние Вселенной должно все больше и все больше изменяться" в направлении, определяемом принципом возрастания энтропии и, следовательно, это состояние должно непрерывно приближаться к некоторому предельному состоянию Флуктуации и проблема физических границ 2-го Начала термодинамики. Пожалуй, впервые термодинамический аспект в космологии обозначил еще Ньютон. Именно он подметил эффект "трения" в часовом механизме Вселенной - тенденцию, которую в середине XIX в. назвали ростом энтропии. В духе своего времени Ньютон призвал на помощь Господа Бога. Он и был приставлен сэром Исааком к слежению за подзаводом и ремонтом этих "часов".

В рамках космологии термодинамический парадокс был осознан в середине XIX в. Дискуссия о парадоксе породила ряд блестящих идей широкого научного значения ("шредингерово" объяснение Л. Больцманом "антиэнтропийности" жизни; введение им флуктуаций в термодинамику, фундаментальные следствия чего в физике не исчерпаны до сих пор; его же грандиозная космологическая флуктуационная гипотеза, за концептуальные рамки которой физика в проблеме "тепловой смерти" Вселенной так еще и не вышла; глубокая и новаторская, но тем не менее исторически ограниченная флуктуационная трактовка Второго Начала.

1.2 Взгляд на Т.С.В. из ХХ века

Современное состояние науки также не согласуется с предположением о тепловой смерти Вселенной. Прежде всего, этот вывод имеет отношение к изолированной системе и не ясно, почему Вселенную можно относить к таким системам.

Во Вселенной действует поле тяготения, которое не принималось Больцманом во внимание, а оно ответственно за появление Звезд и Галактик: силы тяготения могут привести к образованию структуры из хаоса, могут породить Звезды из Космической пыли. Интересно дальнейшее развитие термодинамики и с ней на идею о Т. С.В. На протяжении XIX века были сформулированы основные положения (начала) термодинамики изолированных систем. В первой половине XX века термодинамика развивалась в основном не вглубь, а вширь, возникали различные ее разделы: техническая, химическая, физическая, биологическая и т.д. термодинамики. Только в сороковых годах появились работы по термодинамике открытых систем вблизи точки равновесия, а в восьмидесятых годах возникла синергетика. Последнюю можно трактовать как термодинамику открытых систем вдали от точки равновесия. Итак, современное естествознание отвергает концепцию "тепловой смерти" применительно к Вселенной в целом. Дело в том, что Клаузиус прибегнул в своих рассуждениях к следующим экстраполяциям:

1. Вселенная рассматривается как замкнутая система.

2. Эволюция мира может быть описана как смена его состояний.

тепловая смерть вселенная энтропия

Для мира как целого состояния с максимальной энтропией это имеет смысл, как и для любой конечной системы. Но сама по себе правомочность этих экстраполяций весьма сомнительна, хотя связанные с ними проблемы представляют трудность и для современной физической науки.

2. Закон возрастания энтропии

2.1 Вывод закона возрастания энтропии

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

До изобретения ядерного оружия никто и подумать не мог, что одна бомба может уничтожить целый город. Однако все изменилось после атаки на Хиросиму 6 августа 1945 года. Люди впервые столкнулись с технологией такой разрушительной силы. Это привело к появлению концепции «разумного разрушения»: однажды человек сделает или изобретет нечто такое, что уничтожит Вселенную. Хорошие новости: всех наших ядерных запасов не хватит даже для того, чтобы разрушить Землю. Но кто сказал, что мы единственные разумные существа во Вселенной? .

9. Конец игры

Одна из самых шокирующих теорий относительно нашей реальности заключается в том, что жизнь — это всего лишь компьютерная симуляция . По словам философа Ника Бострома из Оксфордского университета, поскольку компьютеры постоянно совершенствуются, в какой-то момент у людей разовьются настолько мощные вычислительные способности, что они смогут сами моделировать виртуальные миры. Если до этого кто-то не выключит программу, в которой моделями являемся мы сами. Мы даже не успеем осознать, что Вселенной пришел конец.

8. Разрушение основ

По одной из теорий наша Вселенная возможна благодаря существованию физических постоянных вроде скорости света или массы протона. Если бы хоть одна из этих фундаментальных констант имела другое значение, то нас бы просто не было. Как ни странно, австралийские физики выяснили, что с момента Большого Взрыва постоянная тонкой структуры изменилась в пространстве и времени . Это означает, что и другие константы могли меняться с течением времени. И если так пойдет и дальше, то однажды Вселенная просто рассыплется на мелкие частички. А планеты и звезды взорвутся. Правда, произойдет это не раньше, чем через 3 млрд лет.

7. Столкновение с другой вселенной

Что находится за пределами нашей Вселенной? Вероятно — другие вселенные. И если теория множественных вселенных верна, то однажды может произойти великое столкновение. Не исключено, что нечто подобное уже случалось, поскольку наша Вселенная искривлена. Однако в следующий раз последствия могут быть куда более катастрофическими. Другая вселенная может существовать по физическим законам, которые отличаются от наших. Она может врезаться в нас на скорости, близкой к скорости света. Если бы мы могли наблюдать столкновение в замедленном режиме , это выглядело бы так, словно на нас падает гигантское зеркало.

6. Большое сжатие

С момента Большого Взрыва, который произошел 13,8 млрд лет назад, Вселенная расширяется. Большинство физиков считают, что Вселенная бесконечна, однако есть и противоположное мнение. Если это не так, значит, в какой-то момент она начнет сжиматься — подобно волнам, которые откатываются назад в океан. Вселенная будет уменьшаться и схлопнется в одну точку . Теория Большого сжатия подкреплена теорией относительности Эйнштейна. Однако не стоит волноваться: если нечто подобное и произойдет, то через миллиарды лет.

5. Осциллирующая Вселенная

Согласно современным представлениям, Большой Взрыв произошел из сингулярности, то есть из одной точки. Но откуда взялась эта точка? Свое объяснение предлагает теория осциллирующей Вселенной: Большой Взрыв возник после коллапса другой вселенной. Это значит, что наша Вселенная когда-нибудь вновь сожмется в одну точку и из нее возникнет новый мир. Что интересно: если теория верна, значит, мы понятия не имеем, произошла ли наша Вселенная после первого коллапса или после миллион первого .

4. Барьер смерти

Вселенная будет расширяться, пока не достигнет физического барьера . Как если бы хоккейный каток заливали большим количеством воды — и в конце концов она бы ударилась о бортики и перестала растекаться. Согласно расчетам, барьера Вселенная достигнет примерно через 3,7 млрд лет. А вероятность того, что он вообще существует, составляет 50%.

3. Большое поглощение

4 июля 2012 года Большой адронный коллайдер наконец-то подтвердил существование бозона Хиггса. Так называемое «поле Хиггса» пронизывает Вселенную. Интересно, что у этого поля могут быть разные состояния — подобно тому, как вещество может быть жидким, твердым и газообразным. Сейчас поле находится на низком энергетическом уровне, однако оно может перейти как на более высокий, так и на еще более низкий. Последний вариант, по мнению исследователей, более вероятен. Этот энергетический «провал» может быть вызван квантовой флуктуацией. В результате новое маломощное поле Хиггса образует пузырь, который начнет расширяться со скоростью света и поглощать все, что попадется у него на пути. То есть нашу Вселенную . Но у этой пессимистичной теории есть два светлых пятна. Первое — у нас в запасе имеется несколько миллиардов лет. И второе — все случится настолько быстро, что мы не успеем испугаться.

2. Большое замерзание

Сценарий, также известный как Тепловая смерть, основан на втором законе термодинамики — об увеличении энтропии в закрытых системах. Вселенная будет расширяться, а объекты в ней — удаляться друг от друга. Когда энтропия достигнет максимума, энергия будет равномерно распределена, а все процессы остановятся. Звезды остынут, материя распадется… Одним словом, все кругом перестанет работать .

1. Большой разрыв

Вселенная на 68,3% состоит из загадочной темной энергии, о которой физики знают не так уж много. До ее открытия ученые считали, что расширение Вселенной с момента Большого Взрыва либо замедлилось, либо прекратилось. Однако, наблюдая за сверхновыми, астрофизики пришли к выводу, что расширение на самом деле ускоряется, и причина тому — темная энергия. Именно она может привести к тому, что называется Большим разрывом. Этот сценарий гибели Вселенной основан на предположении, что со временем темная энергия набирает силу, все более активно «расталкивая» галактики и космические объекты, разрывая все существующие связи и структуры. Одним словом, Вселенная распадется на мельчайшие частицы . Но нас на финальное шоу не позовут — скорее всего, человечество вымрет гораздо раньше.

Тепловая смерть вселенной - гипотетич. состояние мира, к к-рому якобы должно привести его развитие в результате превращения всех видов энергии в тепловую и равномерного распределения последней в пространстве; в таком случае Вселенная должна прийти в состояние однородного изотермич. равновесия, характеризуемого макс. энтропией. Допущение Т. с. в. формулируется на основе абсолютизации второго начала термодинамики, согласно к-рому энтропия в замкнутой системе может только возрастать. Между тем у второго начала термодинамики, хотя оно и обладает очень большой сферой действия, есть существ. ограничения.

К ним, в частности, относятся многочисленные флуктуационные процессы - броуновское движение частиц, возникновение зародышей новой фазы при переходе вещества из одной фазы в другую, самопроизвольные колебания температуры и давления в равновесной системе и т.п. Еще в трудах Л. Больцмана и Дж. Гиббса было установлено, что второе начало термодинамики имеет статистич. природу и предписываемое им направление процессов фактически является лишь наиболее вероятным, но не единственно возможным. В общей относительности теории показано, что благодаря наличию гравитац. поля в гигантских космич. термодинамич. системах их энтропия может все время возрастать без того, чтобы они достигали равновесного состояния с макс. значением энтропии, т.к. такого состояния в этом случае вообще не существует. Невозможность существования к.-л. абсолютного равновесного состояния у Вселенной связана также с тем фактом, что в нее входят структурные элементы все возрастающего порядка сложности. Поэтому допущение Т. с. в. несостоятельно. .

«Тепловая смерть» Вселенной, ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию -- к так называемому состоянию с максимумом энтропии. Такое состояние соответствовало бы «Т. с.» В. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о «Т. с.» В. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о «Т. с.» В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего тяготение. С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной -- к «Т. с.» В. Вселенная всегда нестатична и непрерывно эволюционирует. .